2023 Undergraduate Orientation

Dr. Justin Opatkiewicz
Associate Teaching Professor
Chemical Engineering Program
Chemical Engineering Program

- Program founded in the late 1970s
- First graduating class in 1980
- ABET accredited in 1984
- Transferred from the MAE department to NANO in 2007
Hands-on classes
Open hours for your own projects
EnVisionaries student org

The Jacobs School’s Makerspace
SME 301

Envision.ucsd.edu
What is Chemical Engineering?
What is Chemical Engineering?

- Calculus
- Chemistry
- Physics

Chemical Engineering
What is Chemical Engineering?

Chemical Engineering

- Calculus
- Statistics
- Economics
- Mechanical Engineering
- Civil Engineering
- Chemistry
- Electrical Engineering
- Computer Science
- Physics
- Biological Engineering
- Materials Science
- Biology
Chemical engineers (that will be you!) transform low value stuff into high value stuff.
Chemical engineers are **not** chemists.

$$A + B \rightarrow C + D$$
Chemical engineers are not chemists.
Traditional chemical engineering use TSTs to do what chemistry alone cannot.
Traditional chemical engineering use TSTs to do what chemistry alone cannot.

TST = Tall Shiny Things
Traditional chemical engineering use TSTs to do what chemistry alone cannot.

TST = Tall Shiny Things

Distillation – Separating things that don’t want to separate.

[theamericanenergynews.com]
Traditional chemical engineering use TSTs to do what chemistry alone cannot.

TST = Tall Shiny Things

Mixers – Making things stick when they don’t want to.

[wired.com]
Traditional chemical engineering use TSTs to do what chemistry alone cannot.

TST = Tall Shiny Things

Reactors – Synthesizing the good stuff on a grand scale.

[eastsidebrewers.org]
Traditional chemical engineering use TSTs to do what chemistry alone cannot.

TST = Tall Shiny Things

Heat exchangers – Making the hot cold and the cold hot.

[hotflusher.com/industrial.cfm]
Modern chemical engineering is highly interdisciplinary.
Modern chemical engineering is highly interdisciplinary.

Clean energy – Transitioning from fossil fuels to renewables.

[carmagazine.co.uk]
Modern chemical engineering is highly interdisciplinary.

Water purification – Addressing local, regional, and global shortages.

[news.discovery.com]
Modern chemical engineering is highly interdisciplinary.

Bioengineering – Producing high-value, low-yield products

[wikipedia.org/biochemical_engineering]
Modern chemical engineering is highly interdisciplinary.

NanoEngineering – There’s plenty of room at the bottom! *

[wikipedia.org/biochemical_engineering]
To do all this, you’ll learn an enormous amount of material.
To do all this, you’ll learn an enormous amount of material.
To do all this, you’ll learn an enormous amount of material.
To do all this, you’ll learn an enormous amount of material.
It will likely take you 4 years to complete your degree.
It will likely take you 4 years to complete your degree.

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>MATLAB</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Exp. Eng.</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
</tbody>
</table>
It will likely take you 4 years to complete your degree.

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>MATLAB</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Exp. Eng</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td>2</td>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>G.E.</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>Material & Energy Bal.</td>
<td>Thermodynamics</td>
<td>Reaction Kinetics</td>
</tr>
</tbody>
</table>
It will likely take you 4 years to complete your degree.

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td>Exp. Eng</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td>Physics</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td>G.E.</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td>Material & Energy Bal.</td>
<td>Thermodynamics</td>
<td>Reaction Kinetics</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td>G.E.</td>
<td>Heat Transfer</td>
<td>Specialization</td>
</tr>
<tr>
<td>Fluid Dynamics</td>
<td>Prob. & Statistics</td>
<td>Mass Transfer</td>
</tr>
<tr>
<td>Exp. Techniques</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It will likely take you 4 years to complete your degree.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>MATLAB</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td>Exp. Eng</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td>2</td>
<td>Math</td>
<td>Math</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>G.E.</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>Material & Energy Bal.</td>
<td>Thermodynamics</td>
<td>Reaction Kinetics</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>G.E.</td>
<td>Heat Transfer</td>
<td>Specialization</td>
</tr>
<tr>
<td></td>
<td>Fluid Dynamics</td>
<td>Prob. & Statistics</td>
<td>Mass Transfer</td>
</tr>
<tr>
<td></td>
<td>Exp. Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G.E.</td>
<td>G.E.</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>Specialization</td>
<td>Specialization</td>
<td>Plant Design</td>
</tr>
<tr>
<td></td>
<td>Separations</td>
<td>Separation</td>
<td>Process Lab</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It should take transfer students only 2 years.

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Math</td>
<td>Matlab</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td>G.E.</td>
<td>Thermodynamics</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>Exp. Eng</td>
<td>Heat Transfer</td>
<td>Exp. Techniques</td>
</tr>
<tr>
<td></td>
<td>Material & Energy Bal.</td>
<td>Prob. & Statistics</td>
<td>Reaction Kinetics</td>
</tr>
<tr>
<td></td>
<td>Fluid Dynamics</td>
<td></td>
<td>Mass Transfer</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Specialization</td>
<td>Chemistry</td>
<td>G.E.</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
<td>Specialization</td>
<td>Specialization</td>
</tr>
<tr>
<td></td>
<td>Separations</td>
<td>Plant Design</td>
<td>Plant Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Lab</td>
<td>Process Lab</td>
</tr>
</tbody>
</table>
There are many organizations that you can join as an undergraduate.

- American Institute of Chemical Engineers (AIChE)
- NanoEngineering and Technology Society (NETS)
A degree in chemical engineering gives you career flexibility.

ChemE Core
- Design
- Optimization
- Control
- Kinetics
- Transport
- Thermo

Math
Physics
Chemistry
Biology

Industry
- Biotechnology
- Chemicals
- Electronics
- Fuel/Energy
- Materials
- Pharmaceuticals
A degree in chemical engineering gives you career flexibility.
A degree in chemical engineering gives you career flexibility.

Math
Physics
Chemistry
Biology

ChemE Core
Design
Optimization
Control
Kinetics
Transport
Thermo

Graduate School

Professional School

Law
Medicine
Business

Industry
Biotechnology
Chemicals
Electronics
Fuel/Energy
Materials
Pharmaceuticals
A degree in chemical engineering gives you career flexibility.

ChemE Core
- Design
- Optimization
- Control
- Kinetics
- Transport
- Thermo

Professional School
- Law
- Medicine
- Business

Graduate School
- Biotechnology
- Chemicals
- Electronics
- Fuel/Energy
- Materials
- Pharmaceuticals

Industry

Academia
We do pretty well when it comes to compensation.
We do pretty well when it comes to compensation.

2022 Mean entry level [payscale.com]

- Chemical: $68k
- Environmental, Civil, Biomedical, Mechanical, Electrical, Mat. Sci. Eng., Computer
We do pretty well when it comes to compensation.

- 2022 Mean entry level [payscale.com]
- 2021 Mean [US Dept. Labor]

$121k
How to Succeed in College

• Schedule plenty of time to study
 ✓ don't get over-committed with jobs, clubs, etc.
 ✓ form a study group, don't always work alone
 ✓ get help if you are struggling, talk to your professor early!

• Get good advice
 ✓ talk to dept advisors and your professors about major requirements
 ✓ talk to college advisors about college requirements
 ✓ join student engineering clubs and talk to juniors and seniors
 ✓ getting academic advice from freshmen and sophomores correlates with leaving school
• Each student has two advisors:
 - Department Advisors - help with major related courses and questions
 - College Advisors - help with general education and university-wide questions

• Questions about Chemistry, Math, Physics, and Biology requirements: direct to the respective department

• All courses on academic plan must be taken for a letter grade (except NANO 4, CENG 4, or NANO/CENG 199). Stick to the academic plan. Core courses only offered once a year

• We recommend that you register for general courses (CHEM, MATH, PHYS) during your first pass, and major courses (CENG/NANO) during your second pass (two passes start your Winter quarter)

• Pre-authorization Request vs Petitions - know the difference and when to use what. On our website.

• How to contact advising: Virtual Advising Center messages, walk-in advising, and appointments only

• Familiarize yourself with our website, the student handbook, and your advisors!

www.nanoengineering.ucsd.edu
We’ll see you in class