Graduate CENG Courses

For course descriptions not found in the current UC San Diego General Catalog, please contact the department for more information.

Courses in Chemical Engineering (CENG)

All students enrolled in CENG courses or admitted to the CENG program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any CENG courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The program does not consider D or F grades as adequate preparation for subsequent material.) All degree courses must be taken for letter grades, and be completed with at least a C- (or retaken and completed with a better grade). Degree elective courses can be selected from NANO or CENG courses (as detailed in the program course requirements), engineering, science, or math courses. Students are required to enroll in the seminar course each quarter. Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in the General catalog.

Graduate Level

CENG 205. Graduate Seminar in Chemical Engineering (1) Each graduate student in CENG is expected to enroll each quarter, and attend at least three seminars per quarter, dealing with current topics in Chemical Engineering, from the department's NANO/CENG seminars, or other UCSD engineering, science, or math seminars. Topics will vary. S/U grades only. May be taken for credit four times.

CENG 207. Nanomedicine (4) (Cross-listed with NANO 243) Introduction to nanomedicine; diffusion and drug dispersion; diffusion in biological systems; drug permeation through biological barriers; drug transport by fluid motion; pharmacokinetics of drug distribution; drug delivery systems; nanomedicine in practice: cancers, cardiovascular diseases, immune diseases, and skin diseases. Students may not receive credit for both CENG 207 and NANO 243.

CENG 210A. Fluid Mechanics I (4) Advanced subject in fluid and continuum mechanics. Content will cover macroscopic balances for linear and angular momentum, kinematics, the stress tensor, Navier-Stokes equations for Newtonian and Generalized Newtonian fluids, viscous and creeping flows and the lubrication approximation, inertial (inviscid) and irrotational flows, generalization of Bernoulli's equation, the boundary layer approximation, electroneutrality approximation and electrokinetic phenomena. Prerequisites: Department approval required, CENG 101A or consent of instructor.

CENG 211. Introduction to NanoEngineering (4) (Cross-listed with NANO 201) Understanding nanotechnology, broad implications,miniaturization: scaling laws; nanoscale physics; types and properties of nanomaterials; nanomechanical oscillators, nano(bio)electronics, nanoscale heat transfer; fluids at nanoscale; machinery cell; applications of nanotechnology and nanobiotechnology. Students may not receive credit for both CENG 208 and NANO 201. (If you are a NE undergraduate student, you must take NANO 101 since this is a core course in your curriculum. NANO 101 cannot be replaced with CENG 211/ NANO 201). Prerequisites: Graduate standing.

CENG 212. Intermolecular and Surface Forces (4) Development of quantitative understanding of the different intermolecular forces between atoms and molecules and how these forces give rise to interesting phenomena at the nanoscale, such as flocculation, wetting, self-assembly in biological (natural) and synthetic systems. Students may not receive credit for both CENG 212 and NANO 202.

CENG 213. Nanoscale Synthesis & Characterization (4) (Cross-listed with NANO 203) Examination of nanoscale synthesis – top-down and bottom-up; physical deposition; chemical vapor deposition; plasma processes; sol-gel processing; soft-lithography; self-assembly & layer-by-layer; molecular synthesis. Nanoscale characterization; microscopy (optical and electron: SEM, TEM); scanning probe microscopes (SEM, AFM); profilometry; reflectometry & ellipsometry; x-ray diffraction; spectroscopies (EDX, SIMS, Mass spec, Raman, XPS); particle size analysis; electrical, optical, magnetic, mechanical, thermal. Students may not receive credit for both CENG 213 and NANO 203.

CENG 214. Nanoscale Physics & Modeling (4) (Cross-listed with NANO 204) Expanded mathematical analysis of topics introduced in CENG 212. Introduction of both analytical and numerical methods through application to problems in nanoengineering. Nanoscale systems of interest include colloidal systems, block-copolymer based self-assembled materials, molecular motors made out of DNA, RNA, or proteins etc. Nanoscale phenomena including self-assembly at the nanoscale, phase separation within confined spaces, diffusion through nanopores and nanoslits etc. Modeling techniques include quantum mechanics, diffusion and kinetics theories, molecular dynamics etc. Students may not receive credit for both CENG 214 and NANO 204. Prerequisites: CENG 212 or consent of instructor.

CENG 215. Nanosystems Integration (4) (Cross-listed with NANO 205) Discussion of scaling issues and how to carry out the effective hierarchical assembly of diverse molecular and nanoscale components into higher order structures which retain the desired electronic/photonic, structural, mechanical or catalytic properties at the microscale and macroscale levels. Novel ways to combine the best aspects of both top-down and bottom-up processes to create a totally unique paradigm change for the integration of heterogeneous molecules and nanocomponents into higher order structures. Students may not receive credit for both CENG 215 and NANO 205.

CENG 221A. Heat Transfer (4) Conduction, convection, and radiation heat transfer. Development of energy conservation equations. Analytical and numerical solutions to heat transport problems. Specific topics and applications vary. Prerequisites: Graduate standing.

CENG 221B. Mass Transfer (4) Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications will vary. Prerequisites: Graduate standing.

CENG 251. Thermodynamics (4) Principles of thermodynamics of single and multi-component systems. Phase equilibria. Estimation, calculation, and correlation of properties of liquids and gases. Prerequisites: Graduate standing.

CENG 252. Chemical Reaction Engineering (4) Analysis of chemical rate processes; complex kinetic systems. Chemical reactor properties in steady state and transient operations; optimal design policies. The interaction of chemical and physical transport processes in affecting reactor design and operating characteristics. Uniqueness/multiplicity and stability in reactor systems. Applications of the heterogeneous reactor systems. Prerequisites: Consent of instructor.

CENG 256. Biomaterials and Biomimetics (4) ​(Cross-listed with NANO 252 and MATS 255) Fundamentals of Materials Science as applied to bioengineering design. Hierarchical structures. Cells and tissues. Natural and synthetic polymeric materials. Biomineralized materials. Biological composites. Cellular materials (foams). Functional biological materials. Biomaterials and implants. Bioinspired design and materials. Students may receive credit for one of the following: CENG 256, NANO 252, MATS 255. Prerequisites: Graduate standing.

CENG 257. Process Technology in the Semiconductor Industry (4) Brief introduction to solid-state materials and devices. Crystal growth and purification. Thin film technology. Application of chemical processing to the manufacture of semiconductor devices. Topics to be covered: Physics of solids, unit operations of solid state materials (bulk crystal growth, oxidation, vacuum science, chemical and physical vapor deposition, epitaxy, doping, etching). Prerequisites: Graduate standing. Open to Chemical Engineering and NanoEngineering majors.

CENG 273: Principles of Immune Engineering (4) (Cross listed with NANO 273) The course will emphasize the principles underlying the development of engineering tools to quantitatively measure complex information about the immune system that has fueled or inspired strategies for manufacturing immune cells, developing analytical methods for measuring immunity and developing immunotherapies. Students may not receive credit for CENG 273 and NANO 273. Prerequisites: Graduate standing.

CENG 299. Graduate Research in Chemical Engineering (1-12) S/U grades only. Prerequisites: Consent of instructor and graduate standing.

CENG 501. Teaching Experience (2) Teaching experience in an appropriate CENG undergraduate course under the direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. (S/U grades only) Prerequisites: Consent of instructor and departmental approval.